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Abstract. Various theoretical and experimental studies have been carried out to examine the generation of waves
ahead of atrandating body. Not all issues pertaining to this wave-motion problem are, however, fully resolved.
In particular, mechanisms pertaining to generation of white-water instability and inception of vortices in the bow
region are not fully understood. In this paper, the two-dimensional, unsteady, nonlinear, viscous-flow problem
associated with a trandating surface-piercing body is solved by means of a finite-difference algorithm based on
boundary-fitted coordinates. Effects of surface tension and surfactants are examined. Results of this work resolve
certain classic issues pertaining to bow flows. A continuous generation of short and steepening bow waves is
observed at low (draft) Froude number, a nonlinear phenomenon uncovered recently in the case of inviscid fluid
also. Thisindicatesthat, steady-state nonlinear bow-flow solution may not exist, even at low speed. It is postul ated
that these short bow waves are responsible for the white-water instability commonly observed ahead of afull-scale
ship. The amplitudes of these short bow waves are suppressed by surface tension, which is, possibly, the reason
why white-water instability is not distinctly observed in |aboratory-scal e experiments. The presence of surfactants
on the free surface is found to intensify the generation of free-surface vorticity, thus resulting in the formation of
bow vortices. The accumulation of surface-active contaminants at the bow is hence responsible for the generation
of bow vortices observed in laboratory experiments at low Froude number. At high Froude number, an impulsive
starting motion of the body resultsin the generation of ajet-like splash at the bow and a gentle start an overturning
bow wave, as previously observed in the case of inviscid bow flow.
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1. Introduction

Motivated by the experimental finding that breaking bow waves could significantly increase
a vessel's powering requirement [1], hydrodynamicists have investigated the mechanisms
associated with the generation of bow waves. Such studies have revealed some interesting
bow-flow phenomena. For example, experimental results of Suzuki [2] and Honji [3] showed
that the flow approaching a surface-piercing body separates upstream, thus resulting in the
generation of bow vortices. Fitting of abulb to ablunt bow was found to acceleratethe fluid at
the bow in such away that bow vorticity and the wave-breaking component of ship resistance
was reduced ([4], [5]). These observations suggested that viscosity could play a key role in
the bow-flow problem. Using the double-body potential-flow solution and the assumption that
surfacetension balancesthe normal component of the viscous stress vector on the free surface,
Patel et al. [6] obtained a criterion for flow separation ahead of the body. Despite these crude
assumptions, experimental resultsagreewith thiscriterion qualitatively well ([7]). Onthe other
hand, Lugt [8] argued that surface tension should not provide any criterion for flow separation.
His analysis, which was based on alocal expansion of the governing equations, showed that
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the dividing streamline is normal to the free surface. However, dividing streamlines that are
normal to the free surface have not been observed in experiments ([ 7]).

Mori [9] claimed that short bow-wave breakings, observable as white water at low speed
prior to complete bow-wave breakdown, isdueto theinstability of free-surface shear layer and
hence due to turbulence. However, Maruo and Ikehata [10] refuted this claim. Experimental
work of Maruo and Ikehata demonstrated that a free-surface shear layer of sufficient strength
isgenerated primarily asaconsegquence of wave breaking, not because of viscosity effects due
to the curviness of the free surface. Their results also suggested that spilling-type bow-wave
breaking is substantially suppressed by surface tension at low speed.

Dagan and Tulin [11] considered bow-wave breaking as a local Taylor instability in a
potential-flow model. Their second-order solution based on a small draft-Froude number
expansion showed that bow-wave breaking could occur when the Froude-number is O(1).
Assuming the flow to be steady-state a priori, Tuck and Vanden-Broeck [12, 13] extended
the above analysis to the fully nonlinear case. They argued that inviscid bow- and stern-flow
problems are reversible; in other words, a splashless stagnation-type bow-flow solution, if
it exists, would correspond to a waveless stern-flow solution. Attempts were then made to
construct waveless bow geometries ([14] and [15]).

Nonlinear, unsteady, i nviscid bow-flow solutionswere obtained by Grosenbaughand Yeung
[16] for some general body shapes. Overturning bow waves were observed above a certain
critical draft-Froude number, which was found to be dependent on the bow geometry. In
particular, it was found that the incorporation of abulbous profile increasesthe critical Froude
number. Application of the above solution procedure for the low-Froude-number case showed
that bow waves of decreasing lengths are continually generated, implying that steady-state
nonlinear bow-flow solutions may not exist even at low Froude number [17]. Based on these
inviscid-flow results, Yeung [17] conjectured that these short bow waves may be responsible
for thewhite-water instability observed ahead of afull-scale ship operating at low draft-Froude
number.

Direct numerical solution of the incompressible Navier—Stokes equations had also been
obtained to determine viscosity effects on bow flows. Most of these computations were based
on the so-called marker-and-cell method, with adrawback that the free-surface boundary con-
ditions can be implemented only approximately. In particular, the presence of surface tension
and surfactants, which could play crucial roles at |low speed, cannot be easily incorporated into
such a method. Nevertheless, using this method, Miyata [18] did obtain some qualitatively
accurate results in the high-Froude-number regime.

This brief review clearly indicates that certain fundamental issues pertaining to the bow-
flow problem remain unresolved. For example, mechanismsresponsiblefor white-water insta-
bility and the origin of bow vorticity at low speed are yet to be fully understood. Recently,
in order to resolve these issues, we have solved numerically the two-dimensional nonlinear
bow-flow problem including the effects of viscosity, surface tension, and surfactant ([19] and
[20]). The analysis and the findings, which resolve some of the classic issues, are presented
in this paper.

2. Problem formulation

Referring to Figure 1, we use afixed (inertial) coordinate system Ozxy, with the z-axis along
the calm-water level and the y-axis pointing upwards. A two-dimensional surface-piercing
body of draft D isassumedto translatein the positive z-direction with velocity U. Thedomain
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Figure 1. Flow due to atrandating two-dimensional body: coordinate system and notations.

of the fluid is denoted by €2 and its boundary by 0€2, which consists of the body contour 3,
free surface F, and afar-field open boundary X. Unit, outward normal- and tangential -vectors
on 0N} are denoted by n = (n1,n2) and 7 = (71, 72), respectively. Acceleration of gravity
is denoted as ¢g. The fluid, of density p, is assumed to be incompressible, homogeneous, and
Newtonian. The coefficient of kinematic viscosity of the fluid is denoted by v and that of the
dynamic viscosity . All flow variables presented henceforth are nondimensionalized with
respectto U, p, and D.

2.1. FIELD EQUATIONS

The field equations governing the viscous bow-flow problem are the incompressible Navier—
Stokes equations given by:

V-u=0, Q)
ou _ 1 _, .
E—FU'VU——VP-FEVU in Q. (2)
Here P = P(x, t) denotesthe dynamic pressure
Y
P = p + vk
i
with p = p(X, t) being the gage pressure at position x. The unknown quantities are velocity
u(x,t) = (u,v) and pressure p(X, t) fields. The parameters Re and F;, defined by
Re = Q and F;= L
v gD

are the Reynolds and Froude numbers based on the body draft, respectively.

2.2. FREE-SURFACE BOUNDARY CONDITIONS
Since the free surface F is amateria surface, itstemporal evolution is governed by

D
X =
D u, 3
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where X = (X, Y) € F and D/Dt denotes the material derivative. Continuity of stress-vector
components across a clean surface along the normal and tangential directionsisgiven by (e.g.,
[21]):

Zn%@ Zn%@ 2ning [(Ou  Ov K

_ 1 2 oI LA 4
Pt Re 0r  Re Oy Re <8y + 8:10) We @)
and
2rimio0u 2mnadv mno+mong (Ou Ov
— — —+—]=0 on 5
Re Ox Re Oy Re <8y * 8:10) s ©)
where x denotes the local curvature of the free surface. We denotes the Weber number:
2
D
We=" [{7 : (6)

where o.. is the surface-tension coefficient of aclean free surface.

The above stress conditions need to be modified to account for the presence of a surfactant,
which, depending on its concentration, altersthe surface tension and thusinducesagradient in
surfacetensionaong F. Thissurface-tension gradient i s balanced by thetangential component
of the viscous-stress vector on the free surface [22].

Surfactants can undergo mass diffusion besides being convected by the flow. In this work,
we consider only the case of insoluble surfactants which, by definition, are transported only
along the free surface, but not into the fluid. Conservation of such surfactants on the free
surfaceis governed by the following transport equation:

oc 0 1 92
5 + 83(CUT) ~ R 8320 on F, @)
where s denotes an arc-length parameter along F and «. the tangential component of the fluid
velocity. The surfactant concentration is denoted by C' = C(s,t) and the nondimensional
coefficient of surface diffusion by R;.

Sincethe surface-tension coefficient o depends on surfactant concentration, i.e. o = o(C),
the free-surface stress conditions become

o 20, 2E00 g (u Doy _ ko ©
Re 0r  Re 0y Re \0y Oz Weo,.
and
Ju ov ou  Ov oC
27’1711% + 2T2n28_y + (11n2 + T2n1) (8_y + %> = —E% on F, 9)
where the parameter
D do
E= i |@ (10)

represents the variation of surface tension with respect to surfactant concentration. We call
FE the surfactant number; this is related to the so-called Marangoni number, a terminology
commonly used in the literature on physicochemical hydrodynamics for a nondimensional
parameter similar to £ (e.g., [23]). A general property of surfactantsisthat do/dC' is negative;
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in other words, surface tension decreaseswith an increasein surfactant concentration. In order
to define E as a positive quantity, we used the modulus of do/dC for the definition of £ and
appropriately included a negative sign on the right-hand side of Equation (9). We also assume
that the variation of surface tension with respect to surfactant concentration is linear; thus, we
can take E as aconstant.

The surfactant concentration C' at agiven ¢ is determined by integration of the surfactant-
transport Equation (7) with respect to time. Note that the transport of surfactantsisgoverned by
the fluid flow which in turn, through the free-surface conditions, is governed by the surfactant
distribution on F. Hence, both the Navier—Stokes and the surfactant-transport equations have
to be solved concurrently.

It hasbeen observedin laboratory experimentsthat surface-active contaminantsaccumul ate
at the bow and affect the flow physicsonly at very low Froude number. At high Froude number,
the contaminants are washed away by flow convection and hence the effect of surfactant is
not significant (see [22] and [7]). At very low Froude number, the free-surface deformation
is negligible. For the purpose of understanding the effect of surfactants on low-speed bow
flows at laboratory scale, it is therefore justifiable to assume that the free surface remains
undeformed and flat. The equations corresponding to the presence of surfactant on aflat free
surface, which we consider for examining the effect of surfactant on low-Froude-number bow
flow, are given by

v=0, w=o0 2__g% ag (12)
oy ox
oc 0 1 0°C

2.3. BODY BOUNDARY CONDITION

Velacity of the fluid particles on the body boundary is determined by the familiar no-slip and
no-flux conditions:

u="U, v=0 onB. (13)

Modeling the movement of the contact points BN F is, however, not so trivial. Application of
theno-dlip condition at BN F resultsin asingularity of the fluid stress, which is basically due
to theincompatibility of body and free-surface boundary conditions. Numerousinvestigations
(e, [24], [25], and [26]) have been carried out in recent years and yet no definitive model
has been devel oped for modeling the movement of the contact point. The molecular-dynamics
simulation of Koplik et al. [26] showsthat fluid indeed slips at the contact line, but its precise
form, from the continuum viewpoint, is not clear. However, several approximate conditions
have been examined in recent years for modeling the movement of contact points (e.g., [27]
and [28]). In the present work, for modeling the movement of the contact points we replace
the no-dlip condition with zero shear-stress (free slip) condition, which is compatible with the
adjacent free-surface condition, over asmall lengthon B at and near BN F:i.e.
ov

u="U, 8_:O on B atandnear BN F. (14)
X

This model is based on the local-slippage model used by Huh and Mason [28], in which it is
assumed that fluid slips freely over a small distance near the contact line. While a sensitivity
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analysis of this model is not the focus of the present study, our results demonstrate that it is
plausible to simulate the movement of the contact line for a wide range of Froude numbers
with this model.

2.4. OTHER CONDITIONS

Finally, for closure, we impose the following approximation on the far-field open boundary
D%

P=0 onX aaltime (15)

Thevelocity on X is determined by a spatial extrapolation that is consistent with the solution
method. Since the above approximate modeling of the open boundary could cause spurious
reflections of wavesincident on X2, we position X at asufficiently large distance from the body
and also terminate the simulation once the body-generated |eading transient wave reaches X.

The body motion is started impulsively from a quiescent state, i.e. both velocity field and
free-surface elevation are set to zero at time ¢ = 0.

3. Solution method

The fully nonlinear unsteady free-surface flow problem is solved in primitive variables by
means of a fractional-step finite-difference algorithm based on boundary-fitted coordinates.
Moredetails of thissolution procedurearegivenin[19, 20, 29]. For compl eteness, an overview
of the solution procedureis given in this section.

3.1. SOLUTION OF FIELD EQUATIONS WITH BOUNDARY CONDITIONS

Asper the primitive-variables-based fractional -step method, an intermediate auxiliary vel ocity
field u*(x) is first computed by use of the momentum Equation (2) without the pressure-
gradient term:

U*(X) = U(X, tk:fl) + 4t R(Xa tk*l)? (16)

where 6t denotesthe time-step size and subscript & the instant of discretetime, e.q. ¢, = k dt.
Further, R(X, tx_1) denotes an explicit differencing of the convection and diffusion terms
where we use the known velocity field at ;1. In the present work, we usefirst-order upwind
differencing for discretizing the coordinate-transformed convection term and second-order
central differencing for the diffusion term of the momentum equation. We can write the
difference scheme for the complete Navier—Stokes equations, following the notations used in
Equation (16), as

U(X,t) = =0t VP(X, 1) + [U(X, tx 1) + 6t R(X, tx1)], (17)
where

V-u(x,tg) =0. (18)
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By comparing Equations (16) and (17), we observethat the auxiliary velocity field u*(x) canbe
expressed as adirect sum of the actual divergence-freevelocity u(X, ¢x) and pressure-gradient
VP(x,t) fields: i.e.

u*(x) = u(x,tg) + otVP(x,t;), whereV -u(x,t;) =0. (19)

We decompose the auxiliary velocity field u*(x) into u(x,t;) and VP(X,t;) fieldsin a
sequential manner. Wefirst determinethe pressurefield by solving aPoisson equation obtained
by taking the divergence of Equation (19):

V2P(x,t) = 5—1tv u*(x). (20)

The correctional effect of the pressure is then incorporated into u*(X) to evaluate u(x, t) as
u(x,tx) = u*(x) — ot VP(X, k), (21)

which follows from the decomposition relation (19). The above fractional-step procedureis
an extension of the projection method, developed by Chorin [30, 31] for the solution of the
incompressible Navier—Stokes equations, to include the treatment of the presence of a free
surface, which is governed by kinematic aswell as stress-vector continuity conditions.

The boundary conditions for u*(x) on the body contour B and the free surface F are
obtained from the decomposition rel ation (Equation 19), (seeaso [32]). On the open boundary
¥, u*(x) isevaluated by spatial extrapolation.

For the solution of the pressure Poisson Equation (20), homogeneous Neumann condition,
obtained in a manner consistent with the solution method, is used on 5. The normal-stress
condition (Equation (4) or (8)) is used to obtain a Dirichlet condition for pressure on 7. On
33, the assumption that the dynamic pressure is zero for all time (Equation (15)) provides
homogeneous Dirichlet condition for the pressure Poisson equation.

The velocity on B is determined by the kinematic condition (Equations (13) and (14)).
On X, the decomposition (Equation (19)) is completed to evaluate u(x, ¢ ). On F, Neumann-
type conditions are obtained for the velocity components by use of the stress conditions.
After computing the velocity field in the domain © by means of Equation (21), we use these
Neumann conditions to determine the velocity components on F. The kinematic condition
(3) is integrated to advance the free-surface boundary in time. For better accuracy, a two-
step predictor-corrector algorithm is used to implement the free-surface boundary conditions.
At each instant of time, the surfactant-conservation equation (see (11)) is solved explicitly
to determine the surfactant concentration. First-order upwind differencing is used for the
discretization of the convection term and second-order central-differencing for the diffusion
term of the surfactant conservation eguation.

3.2. BOUNDARY-FITTED COORDINATES

The geometry of the present nonlinear free-surface flow problem is not only arbitrary, but
also evolving in time. Even so, we can solve the governing flow equationsin afixed uniform
mesh if boundary-fitted coordinates are exploited. The use of curvilinear coordinates further
enables us to implement the boundary conditions accurately. In this procedure, the physical
space (z, y) ismapped to an uniform computational space (¢, n) (see Figure 2). Thegoverning
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Figure 2. Generation of boundary-fitted coordinates using reference space.

flow equations are also transformed to (£,7) space and, thus, the fractional-step algorithm
for the solution of the Navier—Stokes equations is implemented in the uniform computational
mesh (£, n). For the purpose of controlling grid properties such as grid spacings (smoothness),
cell-area distribution, and orthogonality, we use the concept of an intermediate reference
space («, ). Thegrid properties, desired in the physical space (z, y), arefirst obtained in the
reference space («, 3) which isgeometrically similar, but ssmpler than the physical space (see
Figure 2). We then transfer the grid-properties of the reference mesh to the physical space
(z,y), using a variationa formulation [19, 29]. Variational calculus then leads to a set of
differential equations for the grid. Depending on the desired properties that we would like to
control, different grid equationsresult. The field equationsfor the grid functions are presented
below with atypographical error in [29, Equations (29-30)] corrected:

Smoothness

J1
012 c¢ — 261 gy + 01T gy = ﬁ{(ﬂ,nx —an)ze + (=Bex + aep)ryt,
3

J1
01y, — 261,60 + 01ym = 2 (Bnx — i)y e + (—Bex + aen)yn}-
3
The coefficientsin the above equations are given by
X = a0 ge — 2h30 gy + 0300,

Ho= 93’8566 - 2H3’Ba§77 + 035,Wl7



Viscosity and surface-tension effects on wave generation by a trandating body 265
where
01 = :10,277 + y,z,7 sy KI= T ey +Yeln, 01 = ,’L‘,zg + y,zg ,
03 = 04,277 + 6,277 s k3= oy + BBy, 03= oz,zg + 5725 )
Here, J1, J>, and J3 are the Jacobians of the transformations defined as follows:
=z eyn+raye, 2=0ayp+TYa, J3=0aly+anle.

Cell-area distribution

2 o (1
—5{b1 ge + buak g + b3y + @oaY,ee + G2y ey + 003y} = —Ji - | 5 |

2 ,0 (1

—5 11T g + @2 g + 3Ty + Co1Y,ee T C2Y ey + 3yt = —Ji— | =5 |
where

Gyl = —TpYn, by1 = y,zn y Cy1 = x,zn ,

a2 =T gy + TaYe b2 = —2Y Yy, C2 = —20 6Ty,
ay3 = —TeYe, byz = y,2§ » Cu3 = xyzf'

Orthogonality

bo1% ¢ + b2 en + bo3T my + @01y ¢ + @02y £n + Ao3Yn = O,

Q01T ¢ + Q02T gy + Wo3T y + CoY e T Co2Y,en + Co3Y,ym = O,

where
Qo1 = Tyl > bor = 7% , Co1 = Y5,
2 =T eYn +TaYes bo2 =222 x5 + Y eYm) 5 Co2 =22y ey +xey)
o3 = T gy, boz = :U,zg y Co3 = yzg -

In the above equations the comma in the subscript denotes partial differentiation with respect
to the variable following the comma. The grid eguations are linearly combined, discretized
by second-order central differencing, and solved iteratively by means of a mixed over-under
relaxation technique, with the known grid values from the previous instant of discrete time
z(&,m;tk—1), y(&,n; tx—1) taken astheinitial guesses. Derivation and details for implemen-
tation of this grid generation procedure are given in [19].
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Figure 3. Instantaneous plots of near-field grid system generated for F; = 0-5, Uét/D = 0-005. n denotes the
index of discretetime.

4, Resultsand discussion

A mesh size of (141 x 41) is used to obtain the results reported in this paper. The body length
and draft are set equal. The length of the physical domain is about thirty body drafts and the
depth of the domain is about ten body drafts. Using the reference-space-based grid-generation
procedure, we are able to obtain a fine spatial resolution of the zones adjacent to the body
boundary and the free surface where flow gradients are expected to be large. At each time
step, the free surface and the body boundary are advanced based on the kinematic conditions
and the fluid domain discretized by means of the grid equations. | nstantaneous near-field plots
of the grids generated for atypical nonlinear free-surface case shown in Figure 3 demonstrate
the ability of the present grid-generation procedure in adapting to large deformation of the
free-surface boundary. An earlier implementation of such agrid method for free-surface wave
problem can also be found in [33].

Results presented in this paper correspond to Re = 10%. A nondimensional time-step
sizeUdt/D = 0-005 was used in all the calculations, which satisfies the numerical stability
criterion of the present difference scheme that is applicable to a linear advection-diffusion
equation ([34]). The code was partially vectorized, and a typical fully-nonlinear flow case
involving 500 time steps required a cpu time of about 30 minutes on a single processor of a
Cray-Y MP machine.

Accuracy and convergence studies carried out using our algorithm are discussed in [19]
and [20]. Such a study was carried out by consideration of atest problem that corresponds
to the attenuation of a small-amplitude standing wave due to viscosity. By comparing the
nonlinear viscous-flow solutions, obtained with the present algorithm, with those of a linear
viscous-flow analysis ([35]) as well as nonlinear inviscid-flow solutions obtained separately
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and numerically [19], we established convergency and accuracy of our algorithm with respect
to grid refinement (see Figure 4). The findings of this case study also enabled us to determine
the appropriate differencing schemes (e.g., upwind differencing for convection term, while
central differencing for the diffusion term of the Navier—Stokes equations) to be used in the
analysis of the present bow- and stern-flow problem.

4.1. FREE-SLIP AND NO-SLIP ‘FREE SURFACES

In order to understand the mechanisms associated with the generation of upstream trapped
vortices, we first consider two simple cases in which the exact nonlinear free-surface condi-
tions are replaced by (i) flat free-dlip and (ii) flat no-dlip boundary conditions. The boundary
conditions corresponding to these flat free-surface cases are given by

(i) Flat free-dlip surface:

g_UZO,UZO, and Y =0 onF. (22)
Yy

(i) Flat no-dlip surface:

u=U,v=0, and Y =0 onF. (23)

Results corresponding to the flat free-slip condition (Equation (22)) are given in Figure 5
in the form of an instantaneous velocity-vector and vorticity-contour plotst. We observe
the generation of vorticity on the body contour because of the no-dip condition. Negative
(clockwise) vorticities generated at the sharp corners of the body merge and form a macro
vortex trailing the body. Secondary (counter-clockwise) vorticity is generated on the rear face
and underside of the body by the primary vorticity asit peels off the sharp leading edge and by
the stern macro vortex. Generation of vorticity is not observed on theflat free surface because
of theimposed free-slip condition (Equation 22).

Results corresponding to the flat no-slip case, governed by Equation (23), are given in
Figure 6. It shows the generation of vorticity on the top boundary, i.e., the no-dip ‘free
surface’. Strength of the surface vorticity is sufficiently strong to yield a trapped vortex at
the junction of the bow and the upstream ‘free surface’ where the fluid is relatively stagnant
(Figure 7a). Similarly, driven by the primary stern vortex, a secondary vortex is generated at
the junction of the stern and the ‘free surface’ (Figure 7b).

It is well known that the generation of vorticity on an actual deformable free surface is
relatively weak, compared to that on a no-dip wall surface, and that the jump in vorticity
across the free-surface boundary layer is proportional to free-surface curvature (e.g. [36],
pp. 364-367). At very low Froude number, observations show (or we can formally deduce)
that the free-surface deformation is negligibly small compared to the body dimension. Hence,
the flat free-slip condition (22) is a valid approximation for the case of a low-speed free-
surface flow past a body. The above results thus suggest that there ought to be a different
mechanism present that is responsible for the generation of bow vortices as observed in
low-speed laboratory experiments.

! The parameter shown in each of the velocity-vector and vorticity-contour plots is the nondimensional time
Ut/D. Indl vorticity-contour plots shown in this paper the solid lines denote clockwise vorticity, while the dotted
lines denote counter-clockwise vorticity.
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_____ (15x10) mesh —-—-— (30x20) mesh
- (60x40) mesh —— Linear Viscous
0-01 == ———- Nonlinear Potential

0 02 04 06 0-8 1-0

Figure4. Elevation of astanding wave after one period (500 time steps) corresponding to various grid sizes. Initial
wave amplitude a/A = 0-01, where X is the wavelength. The Reynolds number is given by A(gA)Y2/v = 10%.
Also shown, for comparison purposes, are linear viscous-flow (Lamb [35]) and nonlinear potential-flow results
(Ananthakrishnan [19]).

4.2. FREE SURFACE WITH SURFACTANT

In order to determine the effect of surfactants in a low-speed bow flow, we next consider
a case in which the free surface ahead of the body is covered with a surfactant. The curve
corresponding to Ut/D = 0 in Figure 8 shows the initial distribution of the surfactant
concentration C' ahead of the body. The stern-side free surface is assumed to be clean. The
boundary conditions for the bow-side free surface are given by Equation (11), while for the
stern-side free surface by Equation (22). We have obtained results for several valuesof E and
R,, the parameters governing the effect of an insoluble surfactant. The representative case
chosen for discussion in this paper correspondsto E = 0-4 and R, = 10°.

Temporal evolution of the surfactant concentration, given in Figure 8, shows that the
integral of the concentration over the free surface remains constant in time. This indicates
that our solution algorithm conserves mass accurately. The flow ahead of the body reaches a
near steady-state after Ut/ D ~ 5-0. Surfactant concentration and the tangential component
of fluid velocity on the free surface (with respect to body-fixed moving frame of reference)
a Ut/D = 60 are given in Figure 9. It shows that the tangential component of velocity
practically vanishes underneath the surfactant film. Our results thus confirm that a film of
surfactant, trapped at a barrier, could behave asif it were ano-dlip membrane.

Instantaneous velocity and vorticity fields corresponding to the above surfactant-covered
free-surface case, given in Figure 10, reveal that the flow field resembles that of the no-dlip
case (Figures 6 and 7) ahead of the body. In particular, we observe that the generation of
vorticity underneath the surfactant film, because of nonzero shear, results in the separation
of flow upstream of the base body and the formation of a trapped bow vortex (Figure 11).
These results thus demonstrate that bow vortices observed in low-speed small-scale model
experiments are primarily caused by the presence of surface-active contaminants, not merely
by the viscous boundary condition on a clean free surface.

4.3. GENERATION OF BOW AND STERN WAVES

Results obtained for the case of fully nonlinear free-surface conditions are presented next.
Instantaneous vel ocity and vorticity fields corresponding to F; = 0-2 and zero surfacetension
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Figure7. Theformation of trapped bow and secondary stern vorticesin the case of no-dip surface: nondimensiona
timeUt/D = 6.

(i.e., We = oo) are given in Figures 12 to 14. They show that the flow field well beneath the
free surface closely resembles that of the flat free-dlip case discussed earlier (Figure 5). In
general, the free-surface deformation is small, compared to body draft, because of the small
Froude number. A closer observation of the flow ahead of the body reveals the generation of
short bow waves propagating upstream (see Figure 14). These figures also show that surface
vorticities of alternating signs are being generated by these short bow waves. The surface
vorticities remain attached to the free surface as the waves propagate upstream. We do not
observe any flow separation ahead of the body at the free surface and, consequently, the
inception of bow vortices.

Time evolution of the surface wave profile for F; = 0-2 is shown in Figure 15. Nondi-
mensionalized with respect to U and g, the corresponding time interval is gt/U = [0, 62-5].
From this large-time viscous-flow solution, we notice a continuous generation of bow waves
of decreasing lengths, as well as the generation of stern waves. The amplitude and slope of
the stern waves are quite small because of the low Froude number and also because of the
interaction between the free surface and the vortical flow trailing the body. In this context,
it is worthwhile to add that the steepness of steady-state potential-flow stern waves trailing
arectangular body at Froude number F; = 0-2 is of the order of only O(10~3) ([12]). On
the other hand, the short bow waves continue to steepen as they propagate into the stagnant
fluid ahead of the body. Generation of such upstream waves are, however, not observed in the
case of atrandating submerged body (see, for e.q., [37] and [38, p. 128]). It is also impor-
tant to note that these short bow waves are quite different from the classical Cauchy-Poisson
waves generated by a translating pressure systemin which case the transient waves trail the
pressure system (see Figure 16). It suggests, therefore, that the generation of short bow waves
shown in Figure 15 can be attributed to the interaction of the advancing surface-piercing body
with the upstream stagnant fluid. Such continuous generation of short bow waves was first
observed in the inviscid-flow results given in [17]. Inviscid-flow results given in [16] show
that the generation of bow waves at low Froude number continues even after the stagnation
point on the bow reaches the free surface. It is the continuous generation of such short waves
that precludes the solution form of bow flow from the possibility of attaining a steady state.
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Figure 13. Instantaneous vorticity fields corresponding to Fa = 0-2, Re= 10%, and We = oo. The green-blue
spectrum corresponds to clockwise vorticity whereas the orange-red spectrum corresponds to counter-clockwise
vorticity.
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Figure 15. Time evolution of the bow and stern Figure 16. Surface waves generated by a mov-
waves. F; = 02, Re = 10°, We = oo, and ing, unlform pressure distribution of unit width,
Ut/D = [0-05, (0-05),3-00]. For clarity in dis- based on linear theory. Fu = 0-2, with draft
play, successive curves are displaced upwards by D taken as po/pg,po being the applied pres-
5y = 0-03. sure. Successive profiles corresponds to Ut /D =

[0-05, (0-05), 3-00], each displaced upwards by
oy = 0-5for clarity in display.

Theresemblance of the present viscous-flow solutionsand the previousinviscid-flow results
thus suggest that bow-wave generation is governed primarily by inertia and gravity effects
and not by viscosity. Yeung [17] conjectured that the short waves could be responsible for
the white-water instability that is commonly observed ahead of a full-scale ship operating at
low Froude number. Viscous-flow results presented in this paper correspond to relatively low
Reynolds number (Re = 103). Even so, we can conjecture that at higher Reynolds number,
because of the weaker damping effect of viscosity, the short bow waveswould be even steeper
and break in the form of spilling due to instability. In such a scenario, the bow flow would
be turbulent and vortical as observed in the white-water region ahead of afull-scale bow (see
also [20]).

Results corresponding to F,; = 0-2, We = 55, which are presented next, illustrate the scale
effect of surface tension on laboratory-scale bow flows. These specific Froude and Weber
numbers correspond to a body of draft of about 0-1m moving at 0-2m/sec in the air-water
interface. The global flow feature (see Figure 17) resembles that of the zero surface-tension
case (Figures 12 to 14). However, the flow field ahead of the body, as shown in Figure 18,
and free-surface elevation plot, as given in Figure 19, show that the bow waves are sub-
stantially dampened by surface tension; conseguently, the intensity of free-surface vorticity
(because of curvature) is also weaker, compared to that of the zero surface-tension case. The
wave-dampening effect of surface tension thus explains why spilling-type bow waves, which
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Figure 19. Profiles of bow waves, with and without surface tension, at Ut/D = 3. In thisgraph, bow isat = 0.

constitute white-water at low speed, are not distinctly observed in model-scale experiments
(see [10]). The physical origin of stand-alone spilling breakers have recently been studied
carefully by Mui and Dommermuth [39] and Duncan et al. [40].

Finally, we present results obtained for a large-Froude-number case F; = 0-8. From
Figure 20, we observe that an impulsive start of the body generates a splash at the bow that
grows unabated initially, thus inhibiting the advancement of the numerical solution in time.
Such a conseguence of the intersection-point singularity has been encountered in the inviscid
bow-flow analysisalso [16]. A few remedies have been proposed to overcomethis hurdle and
to obtain long-time bow-flow solutions ([16], [17]). Here, we follow the approach suggested
by Yeung [17], according to which the body is accelerated gently from rest to the steady
tranglational speed as:

u(t) £\ t\? t .
_— = _— — — — <
i (Ts> {6<Ts> 15<Ts>+10}7 if ¢t <T,
=1, if ¢ > T, (24)

where T, denotes a start-up time. | nstantaneous velocity fields correspondingto F; = 0-8 and
start-up time Ty = 2-0 are shown in Figure 21. The vorticity field at Ut/D = 2-5 is shown
in Figure 22. We notice that on the rear side of the body, the trailing vortex draws the free
surface down from the calm-water level substantially. However, the gentle start allows the
fluid to pile up at the bow, which in effect reducesthe draft-Froude number. At alater time, the
mound of fluid accumulating at the bow overturns and breaks. The upstream stagnation point
remainstrapped at itsinitial location beneath the free surface asthe bow wave overturns. Such
large Froude-number bow-wave phenomena prior to breaking, have aready been reported
based on the inviscid-flow solutions [16]. Thus, the present large-Froude-number viscous-
flow solutions also indicate that the generation of bow waves and the bow-flow character prior
to wave breaking is governed primarily by inertia and gravity, but not by viscosity.

5. Conclusion

In the present work, we have obtained some new results which can clarify several classic
issues related to the bow-flow problem. It is now confirmed that the trapped bow vortex
reported in low-speed laboratory-scale experiments is due to the presence of surface-active
contaminants and not entirely due to viscosity. Viscous-flow results at low Froude-number
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Figure 22. Vorticity field for F; = 0-8, Re= 10°, and T, = 2 a Ut/ D = 2.5 corresponding to gentle start of the
body. The location of stagnation point on the bow is denoted as ‘ x'.

shows a continuous generation of short and steepening bow waves, just asin the inviscid-fluid
case [17], which could be the source of white-water bow-wave instability. Surface tension
dampensthe generation of such short bow waves, the reason why white-water instability isnot
distinctly observedin alaboratory experiment, in which casethe scal e effect of surfacetension
isquitesubstantial. Viscous-flow results corresponding to large Froude-numbersal so resemble
those of the inviscid-flow case prior to bow-wave breakings. Our study thus demonstrates that
the generation of bow waves and the flow physics ahead of afull-scale ship prior to any wave
breaking is governed primarily by inertia and gravity and not by viscosity. This finding is
contrary to the popular belief that viscosity plays a key role in the bow-wave phenomena,
which was based on laboratory observations discussed in the introduction of this paper.

There are however many issues pertaining to bow flows that remain to be tackled or fully
resolved. For example, from a scientific viewpoint, solution of the bow-flow problem also
necessitatesfurther developmentsof an accurate model for modeling moving contact linesand
for solution methodsfor analyzing flows after wave breaking. Knowledge of three-dimensional
effects and solutions at high Reynolds number are required for a full understanding of the
complex bow flow about a practical full-scale ship form. These are objectives of worthy future
efforts.
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